Optimal power mean bounds for the second Yang mean

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Evaluations for the Sándor–yang Mean by Power Mean

In this paper, we present the best possible upper and lower bounds for the Sándor-Yang mean in terms of the power mean. Mathematics subject classification (2010): 26E60.

متن کامل

Optimal Power Mean Bounds for the Weighted Geometric Mean of Classical Means

For p ∈ R, the power mean of order p of two positive numbers a and b is defined by Mp a, b a b /2 , for p / 0, and Mp a, b √ ab, for p 0. In this paper, we answer the question: what are the greatest value p and the least value q such that the double inequality Mp a, b ≤ A a, b G a, b H1−α−β a, b ≤ Mq a, b holds for all a, b > 0 and α, β > 0 with α β < 1? Here A a, b a b /2, G a, b √ ab, and H a...

متن کامل

Sharp bounds by the power mean for the generalized Heronian mean

* Correspondence: [email protected] Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China Full list of author information is available at the end of the article Abstract In this article, we answer the question: For p, ω Î R with ω >0 and p(ω 2) ≠ 0, what are the greatest value r1 = r1(p, ω) and the least value r2 = r2(p, ω) such that the double inequality Mr1 (a, b) ...

متن کامل

Sharp Bounds for Seiffert Mean in Terms of Weighted Power Means of Arithmetic Mean and Geometric Mean

For a,b > 0 with a = b , let P = (a− b)/(4arctana/b−π) , A = (a+ b)/2 , G = √ ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of arithmetic mean A and geometric mean G : ( 2 3 A p1 + 3 G p1 )1/p1 < P < ( 2 3 A p2 + 3 G p2 )1/p2 , where p1 = 4/5 and p2 = logπ/2 (3/2)...

متن کامل

Bounds on the Power-weighted Mean Nearest Neighbor Distance

In this paper, bounds on the mean power-weighted nearest neighbor distance are derived. Previous work concentrates mainly on the infinite sample limit, whereas our bounds hold for any sample size. The results are expected to be of importance for example in statistical physics, nonparametric statistics and computational geometry, where they are related to the structure of matter as well as prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2016

ISSN: 1029-242X

DOI: 10.1186/s13660-016-0970-y